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1. Introduction and summary 

Let nj denote a normal population with unknown mean pi and known variance 

o,? (1 I is k). Without loss of generality we label the populations so that a:~ 
2 o2 I ... 5 (T;. To avoid trivialities, we assume that at least one of these inequalities 

is strict. Let Q denote the space of all parameter points o =(p,02) where ,u= 

(Pl,Pu,, .*-, pk) and c2 = (a:, of, . . . , 0:). Let runI 5,uc2] I ... 5pu[kl denote the ordered 

values of the p,. We assume that the correct pairing of ni (and hence of G’) with 

~,jl (1 pi, jsk) is completely unknown. The experimenter’s goal is to select the 

population with mean p ,kl (referred to as the ‘best’ population and assumed to be 

unique). If the decision procedure selects this population then a correct selection 

(CS) is said to have been made. 

We adopt the indifference-zone approach of Bechhofer (1954) for this selection 

problem. In this approach, consideration is restricted to those procedures which 

guarantee the probability requirement: 

inf P(CS) 2 P * (1.1) 
R(d*) 

where 

~(6*)={wESZI~,k,-l*,k-I]~8*} (1.2) 

is the so-called preference zone (complement of the indifference zone in Q), and 

6*>0 and P*~(l/k, 1) are prespecified constants. 

Throughout this article we consider only the ‘natural’ single-stage selection 

procedure R, which takes independent random samples {X, (1 ~jsn;)} from the 

flj (1 <is/c) and selects the population that yields the largest sample mean, 

max, fink Xi, where 1; = C$ l X,/n; (1 I is k). The globally optimal choice of the 

sample sizes n, to guarantee the specified probability requirement (1.1) is the prob- 

lem considered in the present article. 

The optimization problem that we wish to solve is the following. 

Exact Discrete Optimization Problem: For given o2 and total sample size N, and 

specified 6*, find the allocation n = (n,, . . . , nk) which achieves 

max bif, P(CS) 
* (1.3) 

where the max is taken over all allocation vectors n subject to CF=, n, = N; here the 

n, 2 0 are integer valued sample sizes to be used in the procedure R. We denote the 

solution to (1.3) by fi = (fi i, . . . , Ak) and refer to it as the globally optimal allocation. 
(For the sake of conciseness, we will drop the prefix ‘globally’ from now on. Thus 

an allocation referred to simply as optimal will be understood to be globally op- 

timal.) It is easy to see that ii also solves the dual of this optimization problem, 

namely, it guarantees (1.1) with the smallest possible total sample size N= Cf=, Ai 

for specified P*. We primarily address the former problem (or rather a continuous 

approximation of it given in (2.6)) in the present article. 



R.E. Bechhofer et al. / Opiimal sample allocation for selecting the best population 273 

A convenient choice of the nj (ignoring the integer restriction on them) is one 

that makes Var(X;) (1 <ilk) equal, i.e., 

2 2 
Gl 02 

2 
Ok _=__=...=- 

nl n2 nk 
(1.4) 

This allocation has the advantage that standard tables such as Table I in Bechhofer 

(1954) or Table Al in Gibbons, Olkin and Sobel (1977) can be used to determine 

the ni necessary to guarantee (1.1) using R; see (2.12). In Bechhofer (1954) it was 

pointed out that the allocation (1.4) is not optimal for k= 2, the optimal allocation 

(again ignoring the integer restriction on the ni) being 

01 02 -=- 

*I n2 

(1.5) 

Dudewicz and Dalal (1975) have studied for k = 2 the relative efficiency of the 

allocation (1.4) with respect to the optimal allocation (1.5). They have shown that 

as OF/G; approaches zero, the allocation (1.4) requires twice as many observations 

as that required by the allocation (1.5) to guarantee (1.1). 

For kr 3 the optimal allocation has not yet been determined. Tong and Wetzell 

(1984) have given some asymptotic results but their emphasis is on the sequential 

setting. Gupta and Miescke (1988) have considered this problem in a decision 

theoretic framework. In Bechhofer (1954, p. 24) (where the problem was first posed), 

in Hall (1959, p. 965), and in Dudewicz and Dalal (1975, p. 34) it is stated that for 

kr 3 the optimal allocation appears to be too complicated for practical application, 

while Gibbons et al. (1977, p. 68) remark that (1.4) may not be optimal for kz 3. 

In this article we prove that for kz 3, the allocation (1.4) is in fact locally optima/ 
for certain ranges of values of the parameters of the problem. More precisely, let 

where 

A=P@/d (1.6) 

(1.7) 

We show that for given variances a:, . . . , ai, the allocation (1.4) is locally optimal 
except for A,< J. <A, where A,_ and A, are two critical constants which can be 

determined explicitly by solving a simple equation for each. Since info(,,, P(CS) 

for the allocation (1.4) is a strictly increasing function of J., the above limits on 1 

imply corresponding limits on P*, namely, P,< P*<P,. Furthermore, letting 

p;=a,?/02 (Isilk), (1.8) 

we show that /z,(P,) depends only on Pk while A,(P,) depends only on /I,. Thus 

the determination of P, and Pu requires only the specification of the largest and 

smallest relative variances (with respect to the average variance), respectively. In 

most practical cases of interest, P, is quite small (0.30-0.50), and so it is only Pu 

that needs to be determined. We show that A,_< m (P,_ < 1) always, while A, < m 
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(Pu< 1) only when 

P,>k 
2(k- 1) ’ 

(1.9) 

i.e., when 0: is ‘sufficiently’ large with respect to ~7’; otherwise ,I” = 03. 

Although we have been able to derive analytically only local optimality results for 

kr 3, nevertheless these results are valuable for the following reasons: (a) Numerical 

searches for k = 3 indicate that local optimality of (1.4) indeed corresponds to global 

optimality; we conjecture that this is true for k>3. (b) These results yield insight 

into the nature of difficulties and the structure of the solution. As indicated above, 

this problem has been studied for more than 35 years by many researchers, and a 

complete analytical solution, particularly for k> 3, appears very difficult. The pre- 

sent work represents the most significant stride that has been made toward the 

solution. 

The outline of the paper is as follows. Section 2 gives a mathematical formulation 

of the optimization problem. Section 3 gives the main theoretical results of the 

paper. The special case k= 2 is discussed in Section 3.1. The new results for kr 3 

are summarized in Theorems l-3 in Section 3.2. The proofs of all of the theorems 

are given in the Appendix. Section 3.3 gives a table of critical values of /3, for 

selected values of k and P*; this table is useful in determining whether allocation 

(1.4) is or is not locally optimal. Section 4 gives the results of numerical searches 

for the optimal allocation that we carried out for k= 3 and for selected u2 con- 

figurations when allocation (1.4) is not optimal. Section 5 gives concluding remarks. 

2. Problem formulation 

Let 

Q;(S*)={~EQ@*) I,q=/+,} (lzsisk), (2.1) 

i.e., Q;(S*) is that part of the preference zone Q(6*) where the population having 

the variance 0, is the best population. It was shown in Bechhofer (1954) that for 

procedure R with any choice of n and for any fixed known 02, 

inf P(CS) = P,,,Q*,(CS) 
Q,(d*) 

(2.2) 

where ~;(a*) is any p satisfying 

PI = ... =p;_, =p;+, =... =&=F(;-d*, 

i.e., ,~;(a*) is the so-called slippage configuration with ,u;=P~~, (1 <is k). Denoting 

Pp,t,*,(CS) by Pi (15 is k) we see that 

inf P(CS) = min Pi. 
-w’) lsisk 

(2.3) 
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If we let 

y,=rz;/N (1Silk) (2.4) 

then it is easy to show that for fixed y=(yt, yz, . . . . ok), 

~,=~,(yI&fl)= ia .h @[~(x~+WSWx (1 risk) (2.5) 
.-co/=] 

j#l 

where @(.) and #(.) denote the standard normal c.d.f. and p.d.f., respectively, and 

A is given by (1.6). 

For given N, /3= (p,, p2, . . . , Pk), and specified 6*, each P, is a function of the 

discrete valued argument y since each yjr0 is a multiple of l/N with CT=, yj = 1. 

For any given k, 02, 6* and N, th e exact integer-valued optimal allocation ii = 

(fi,,&, ..*, fik) that maximizes (2.3) where CfZ 1 A,= N can be found by enumera- 

tion. However, this is only feasible for small values of N. Moreover, the integer 

solution has the disadvantage that a separate answer is needed for each (6*/o, N). 

In the sequel we seek an approximation to this integer programming problem that 

does not depend on 6*/B and N separately but rather only on /z = 6 * n//a. To this 

end we henceforth regard the yjr0 as continuous variables summing to unity and 

ignore their dependence on N. This continuous approximation obviously will 

become more accurate as N increases. This same device was employed in Bechhofer 

(1969). Thus P;=P;(y 1 ,I, p) can be regarded as a continuous function of y for 

given p and specified i 2 0. We refer to any y in the (k - I)-simplex 

I-= 
i 

y: yjro, 5 yi=l 
i=l 1 

as an allocation. 
We now state the continuous optimization problem (which is an approximation 

to the exact discrete optimization problem (1.3)) as follows: 

Approximate Continuous Optimization Problem: For given p and specified A 10 

find y E f which achieves 

We denote the solution to (2.6) by f = jJ(A, B) and refer to it as the optimal alloca- 
tion; we denote the corresponding max-min probability by 15 = P( 9). For fixed given 

j? we will be interested in studying the behavior of y^ and P as functions of 1. 

We conclude this section by showing how to determine the sample sizes necessary 

to guarantee (1.1) when allocation (1.4) is used. Denote the allocation (1.4) by 

r”=(y~,y~,...,y~) where 

0 0 
3 _ y2 

0 1 1 
p* -p,=.*.=z= z;=, p;=z * (2.7) 
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Note from (2.5) that 

P,(yO j A, P) =P2(r0 I A PI = ... = Pk(ro 1 A, 8) =p”(k P) (say) (2.8) 
where 

PO(.I,P)=~~~C*~l(x+~)6(x)dr 

(2.9) 

If c(k,P*) denotes the solution in c to the equation 

ncc 

I 
@k-l(~+~)@(~) dx=P*, (2.10) 

I, -m 

then the total sample size No required to guarantee (1.1) when using the allocation 

(1.4) (or equivalently (2.7)) is given 

The corresponding n;‘s (denoted by 

by 

n:‘s) are given by 

(2.11) 

n;= (2.12) 

The critical constant c(k,P*) is tabulated in the references cited following (1.4). 

3. Optimal allocation for k L 2 

3. I. Special case k = 2 

For k = 2, we see that (2.5) reduces to 

pi =p2= @W{P,h, +P2h2Y21, 

and the optimal allocation for all A 2 0 is given by (1.5). The case k = 2 has several 

special simplifying features, which do not extend to the cases kr 3. These features 

are: 
(i) For any fixed ,u, cr2 and y, the P(CS) is the same regardless of the association 

between ,LL~;] and o,? (i, j = 1,2). Moreover, the allocation (1.5) maximizes this P(CS) 

at any ,u, not just at the slippage configuration. 

(ii) This P(CS) (in particular, P, =P2) can be expressed as a univariate normal 

c.d.f., which for given N is maximized by minimizing Var(X, -x2) = of/n, + oi/n, 
subject to nl + nz = N. 

For k13 the P, are in general different. Furthermore, each P, is a multivariate 
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normal probability, which depends not only on the Var(X;-Xj) but also on the 

COtT(Xi-Xj,X;-Xj,) (j#j’#i, lSj,j’lk). 

3.2. General case kz3 

In this section we determine the range of values of A for which the allocation y” 

given by (2.8) is locally optimal when kr 3. The principal results of this section are 

summarized in the following theorems: 

Theorem 1. Define 

and 
k 

G(A) = - 
AU) 

k-l A@)-B(A) ’ 

(3.1) 

(3.2) 

(3.3) 

Then the allocation (2.7) is locally optimal iff 

G(A)2Pk or G@)s~,. (3.4) 

Corollary. For A = G-‘(l) (that G-’ exists and is unique follows from Theorem 2 
below) the allocation (2.7) is locally (and, in fact globally) optimal iff a: = ... = ai. 
n 

Theorem 2. For A > 0 the function G(L) is continuous and strictly decreasing in A 
with limn j o G(A) = CO and lim, _ m G(A) = k/2(k - 1). Hence the condition (3.4) is 
equivalent to the condition 

/11/1L or AZ-I.,, (3.5) 

respectively. Here A,_ is the unique finite solution in A of the equation 

G(l) =P (3.6) 

with p = Pk, and if (1.9) is satisfied then AU is the unique finite solution in /I of (3.6) 
with f3=p,. If (1.9) is not satisfied then (3.6) with p=fi, does not have a solution 
and in that case we define AU = 03. 

Corollary. The allocation (2.7) is locally optimal iff the specified P* is 5 P, or 2 P, 
where 

(3.7) 
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and 

P = ./I,@‘++$#Wdx lf8,>&. 

U 

I 

k 
(3.8) 

1 if&I- 
2(k- 1) ’ 

O 

We now give (in Theorem 3) an alternative representation for equation (3.6) which 

is convenient for computing. This representation involves multivariate normal 

c.d.f.‘s for which we use the following notation: Let X1,X,, . . . ,XP have a joint p- 

variate normal distribution with zero means, unit variances, and common correla- 

tion Q = corr(X;, X,) for if j (15 i, j<p). We denote the equicoordinate multi- 

variate normal probability 

P(XiSX,X2SX, . . ..X.SX) 

by @Jx 1 Q). For p = 1 this probability is simply the univariate normal c.d.f. denoted 

by Q(x). For p=O we define this probability to be unity. 

Theorem 3. Set T= A/e. Then A,_ = rLm where rL is the unique solution in T 
of the equation 

T@,"2(T 1 f) k(k - 2) 

@(T)@k_j(T/fi ( a) = 3[2(k- l)p- k] 
(3.9) 

with /I =Pk. Similarly if condition (1.9) is satisfied, then A, = TUm where su is the 
unique solution in 5 of (3.9) with /I =/I, . 

Remark 1. For r>O the left-hand side of (3.9) is positive which leads to condition 

(1.9). (Note that fi,>k/2(k- 1) always.) 

Remark 2. For k= 3 the left-hand side of (3.9) reduces to T@(~)/@(T) which is very 

simple to evaluate. 

3.3. Table of critical values of /I, for k> 3 

Table 1 gives values of the lower bound on PI, say p:, and the values of the 

associated lower bound on P,, say P$, such that for P*z PG (for P,*=O.80, 0.90, 

0.95 and 0.99 and k = 3(1)8), the allocation y” given by (2.7) is locally optimal if 

p, rp:. We also have added a row for P:= 1 in which case p:= k/2(k- 1). 

To illustrate the use of this table, suppose that k=3 and P*=O.95. If PI L 

pF=O.806 then y” is the locally optimal allocation, and the corresponding sample 

sizes required can be found from (2.12) once 6* is specified. If /?t </?T then the op- 

timal allocation is not given by y”. 

An analogous table could be given for /3: for selected values of PT such that for 
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Table 1 
Critical values /I: 

p; 

0.80 

0.90 

0.95 

0.99 

1 .oo 

3 4 

0.907 0.854 

0.838 0.810 

0.806 0.741 

0.775 0.670 

0.750 0.667 

k 

5 6 I 8 

0.826 0.809 0.798 0.791 

0.748 0.73 1 0.720 0.712 

0.708 0.690 0.678 0.670 

0.664 0.643 0.629 0.620 

0.625 0.600 0.583 0.571 

P*I PLY, the allocation y” is locally optimal if fik<P:. However, such a table is 

likely to be of less practical value since large values of P* are more common. 

4. Numerical results for k=3 

In Section 3 we derived a necessary and sufficient condition for y” to be locally 

optimal for any k ~3. In the present section we investigate the nature of the (global- 

ly) optimal allocation when that condition fails, i.e., when P,<P*<P,. We also 

investigate the amount of the associated saving in the total sample size in com- 

parison to that required by the allocation y” to guarantee the same probability re- 

quirement (1.1). 

An analytical characterization of the optimal allocation appears to be very dif- 

ficult when P,< P*< Pu holds. Therefore we decided to investigate numerically 

the behavior of the optimal allocation as a function of P* by performing a search 

in the allocation space ZY This would be a very formidable computational task for 

large k, so we confined our attention to k= 3, in which case the search is only in 

two dimensions. 

For k= 3, we present the results for a total of six C* = (a:, at, 0;) configurations. 

The first three configurations have crf/af=3, while the second three have 

cr~/cr~ = 10. These configurations and the associated j? vectors are listed in Table 2. 

Note that the optimal allocation (and, as will be seen below, the relative saving in 

the total sample size) depends only on the relative magnitudes of the cr,?, not their 

absolute magnitudes. For each configuration, we have pi < k/2(k- 1) =0.75 and 

hence Pu = 1. The P,-values associated with each configuration j? (recall that PL 

depends on /3 only through fik) are also listed in Table 2. For each configuration 

the optimal allocation was determined numerically for P*= 0.80, 0.90, 0.95 and 

0.99; note that this practical range of P*-values is well in excess of P, for each 

configuration. 

The numerical search for the optimal allocation was carried out as follows: Let 

11’ be the A-value required using the allocation y” to guarantee the probability re- 
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quirement (1.1) for specified P* and for any 6* > 0; from (2.9) we see that Jo = 

fic(k,P*). Let I<h” b e t h e corresponding A-value required using the associated 

optimal allocation 9. Starting with 1’ we decreased A in steps of 0.001, determining 

the optimal allocation f and the associated max-min probability p for each A (note 

that P decreases with A), until the smallest possible A for which p? P* was attained. 

This is the desired value of 2, which is tabulated together with f in Table 2. A mesh 

size of at most & was used for each yi in the search over the allocation space r. 

The percentage relative saving (I%) in the total sample size resulting from the use 

of the optimal allocation f instead of the allocation y” to guarantee the same prob- 

ability requirement (1.1) is given by 

is=(y) x loo= [‘““:l,r”“] X 100. (4.1) 

The values of 8 are also listed in Table 2. 

From Table 2 we first note that, as one would expect, the relative savings are sub- 

stantially higher for the configurations with ,:/o:= 10 compared to those for the 

configurations with of/a:=3. Thus the relative saving in the total sample size 

from the use of the optimal allocation 7 (in comparison to that required when using 

the allocation v”) appears to increase with o2 max/o$n. Of course, the relative saving 

is not simply a function of a2 max/~iin. For example, the relative savings are quite 

different for the cases o’=(l, 10,lO) and (l,l, 10). For each configuration, the 

relative saving is highest for P * = 0.80 and decreases as P * increases. For the con- 

figuration y2=(1, 1, lo), the relative saving is nearly 23% for P*=O.80. This in- 

dicates that there is much to be gained by using the optimal allocation y^ instead of 

the ‘convenient’ allocation y”, particularly when CJ~J(T$~ is large and P* is in 

between PL and P,. We should, however, stress that although the relative savings 

are small for large P*, the absolute savings, No-A= {(Ao)2 - (X)2}(~/6*)2, can be 

quite large, more so when 6*/r? is small. 

In practice the numerical search for the optimal allocation Q can be prohibitively 

expensive and possibly even infeasible for large k. Therefore it would be desirable 

to have a simple heuristic rule that would improve upon y” and possibly serve as 

a reasonable approximation to the optimal allocation 9. With this in mind we now 

carefully examine the y^-vectors listed in Table 2. 

In several cases we note that y^ does not change as we vary P*. We do not have 

a simple explanation for this behavior of the optimal allocation. We also observe 

quite unmistakeably that I;;5 y,! iff pi5 1. In other words, y^ allocates a smaller 

(larger) proportion of observations (than that allocated by r”) to any population 

with larger (smaller) variance relative to f12 which results in the inequality (general- 

izing from k = 3 to k> 3) 

(4.2) 
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We know that pi S fi depending on whether pi S 1. Therefore the allocation 7 with 

(4.3) 

which chooses the nj’s in proportion to the D;‘s, is an allocation that satisfies (4.2). 

Recall that this allocation is globally optimal for k=2. It would be of interest to 

determine how close this allocation is to the optimum for k= 3 when P,< P*< Pu 

holds and hence when y” is known not to be optimal. To this end we determined 

the smallest A-value (denoted by 1) for the allocation p such that the associated 

probability is L P* for the 02-configurations and P*-values listed in Table 2. We 

also calculated the percentage relative saving (I@ associated with 7 relative to y” 

as in (4.1). The results are given in Table 3. 

Inspection of Tables 2 and 3 reveals that in many cases, the f allocation achieves 

relative savings nearly equal to those achieved by the optimal allocation y^. The 7 

allocation improves upon the y” allocation in all of the cases studied except two 

(for IJ~= (1,2,3) and (1, 1,3) when P*=O.99), and in those two cases the excess 

sample size required by p compared to that required by y” is not large, in relative 

terms. 

Recognizing the computational difficulties involved in determining the optimal 

allocation f when P,< P*<P, holds, we recommend the jj allocation in this case 

with little reservation. 

5. Concluding remarks 

In this paper we have shown that the convenient allocation y” given by (2.7) is 

locally optimal for kr 3 if and only if P*I P, or P*r Pu where PL and P, can be 

explicitly determined given Pk and PI, respectively. The determination of the global- 

ly optimal allocation 9 (whether or not it equals r”) requires the knowledge of all 

of the pi’s, and the determination of the associated sample sizes yij needed to 

guarantee (1 .l) for specified {a*, P*} requires the knowledge of all of the a,?‘~. 

The optimal allocation is difficult to determine when P,< P*< Pu holds. In that 

case, use of the allocation 7 given by (4.3) (or some other allocation satisfying (4.2)) 

is suggested. 

There are two matters of concern when the variances are unequal. First, assuming 

that selection in terms of means is still meaningful, the appropriateness of the pro- 

cedure R, which bases its decision on the sample means xi, may be called into 

question for the following reason: Suppose that the two largest sample means differ 

by a very small amount, but the largest sample mean has a much a larger variance 

than the second largest sample mean. (This is possible even when the a,?‘~ are equal 

but the ni’S are not.) Intuition suggests that in this case we should select the popu- 

lation yielding the second largest sample mean as the ‘best’. This is because the se- 

cond largest sample mean is a much more reliable estimator of its population mean 
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(which is thus likely to be large and possibly the largest) than the largest sample 

mean is of its population mean (which is thus less likely to be the largest). Recently 

Berger and Deely (1988) have given a Bayesian solution to this problem which in- 

volves shrinking the sample means toward a central average, the extent of shrinkage 

being greater for extreme (large or small) sample means having larger variances. 

The second matter concerns the appropriateness of the selection goal itself. If the 

population having the largest mean also has (nearly) the largest variance then the 

experimenter might wish to select another population with a somewhat smaller mean 

if it also has a small variance. Santner and Tamhane (1984) have proposed a for- 

mulation and a procedure for such a selection goal. 

Appendix 

We now provide the proofs of the three theorems stated in Section 3. 

Proof of Theorem 1. Instead of y, it will be more convenient to work in terms of 

~l=(cr,, . . ..ok) where 

We wish to determine the necessary and sufficient conditions for the allocation y” 

given by (2.8), i.e., 

a”=(ap,a;, . ..) a$=(l/lliI;,l/fi )...) l/fi), 

to be locally optimal. Since at EI’ we have Pi = ... = Pk = P" as noted in (2.9), and 

since the objective function to be maximized is min,,j5k Pi, it follows that 

~2’ is locally optimal 

e for every CE g”, 3 i (15 is k) which in general depends on c 3 

(A.1) 

where gk = {c: 1”; 1 c, = 0) is the space of all k-dimensional contrasts. Note that 

the quantity on the left-hand side of the equality in (A.l) is the gradient of P, at 

a0 along the direction c. 

To derive a formula for this gradient we require the partial derivatives dP,/aa, 
(j#i) and i3P,/aq evaluated at c.z’. It can be shown that 

where A(L) is defined in (3.1), and 

64.2) 

apj 
_ 
aaj ao 

= -(k - l)fiB@) (A.31 
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where B(A) is defined in (3.2). Hence the gradient in (A.l) can be written as 

(using (A.2) and (A.3)) 

where G(L) is defined in (3.3). Since A(A)>O, condition (A.l) is equivalent to the 

condition: 

EI’ is locally optimal 

@ VCE@, 3i (llirk) 3 ~ dj-d;kH(~)rO (A.4) 
J=I 

where for notational convenience we have put 

and 

&=c;//I; (Isirk) 

H(A) = (G(I) - 1)/G(A). 

We consider three cases separately: G(A) = 1, i.e., H(A) = 0; G(A) > 1, i.e., H(A) > 0; 

and G(A)< 1, i.e., H(L)<O. 

Case I (G(A) = 1, i.e., H(L) = 0). In this case CI’ is locally optimal 

k 
~ VC~ ok, C dj10 

/=I 

e p, = . . . ZPkZ 1 

# 
2 2 

(T, =“‘=ok. 

Case 2 (G(A)> 1, i.e., H(A)> 0). In this case we want to show that ~1’ is locally 

optimal iff G(/I)zp, (because we cannot have G(A)rpr since PI < 1). We first do 

the ‘only if’ part of the proof. Thus suppose a0 is locally optimal. Choose d, = ... = 

dk_ , = 1 and dk = - CF:,’ pi/pk. From (A.4) we then have, 

ji3((k- I)- F -d,kH(A)rO. 
k 

However, this is true iff 

d,,,kH(l)rk(l - I/&) 

* H(A) 2 1 - 1 /Pk (since d,,, = 1) 

(A.3 
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For the ‘if’ part of the proof, we must show that G(d)zp, * for any CE gk, 

(A.4) holds for some i. We will show that for a given c E Qk, this is true for i = i * 
where dj* = maxi., , d and I= {i: Ci >O}. To prove this we introduce additional nota- 

tion and derive two inequalities. Let J={j: cj<O}, card(Z)=s (l~s~k- l), c,= 

cjS, c;= -cJ, d,=Cjf, d, and /?,=Ci,,pi. The first inequality is obtained as 

follows: 

G(A) z& 

* ,!$kH(A)r i (flk-p;) (by using (A.5)) 
i=l 

* s - kH(A) 5 /I,/&. 

The second inequality is obtained as follows: 

d,,rd, for igl 

* d;*(l -P;/&)Ld;(l -Pi/&) for iEl 

* C;-di*p;L(d;-d,*)Pk for iEl 

= ~,-d~*P,Z(d,-sd,*)p, (by summing over iel) 

(A-7) 

* {d;.-(c,//l,)}(& -PI)2 {d,-s(c,/P,)lj?k (by rearranging terms) 

* (dj*-(c,/P,))kPkH(~)L(d,-S(C,/P,))Pk (by using (A.6)) 

* d,-d;,kH(A)s{s-kH(l)}(c,//l,). (‘4.8) 

In the penultimate step above we have used the fact that d,,>c,/p,. 
Returning to the ‘if’ part of the proof, we see that for i = i *, the left-hand side 

of (A.4) equals 

; dj-d,.kH(A) 
j=l 

= d,- d;*kH(I) + c (q/p,) 
jsJ 

sd,-d,*kH(A)+c,//?, (since pk>pj and c,<O for j, J) 

I {S - kH(A)}(c,/p,) - c,/pI( (by Using (A.8) and cJ = -CI) 

5 (b,/Pk)h/P,) - c,ipk (by USiW (A.7)) 

=o. 

This shows that for given CE gk, (A.4) holds for i= i*. This completes the proof 

for Case 2. 

Case 3 (G(A) < 1, i.e., H(A) < 0). The proof in this case is analogous to that in Case 

2. Here we want to show that a0 is locally optimal iff G(A)<p, (because we cannot 
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have G(n)>/?, since Pk > 1). The proof of the ‘only if’ part is obtained by choosing 

d, = Crz, pi/j3, and d2 = ... =dk= -1. The proof of the ‘if’ part is obtained by 

showing that G(A)lj3, * for any given c E ?Zk, (A.4) holds for i= j* where Id,, 1 = 

maxjcJ ldjl. Th’ 1s completes the proof of Case 3 and hence of the theorem. q 

The corollary to Theorem 1 follows from Case 1 considered above, or from the 

fact that p, I 1 <Pk with equalities holding iff a: = ... = 0;. 

Proof of Theorem 2. The continuity of G(A) follows from the continuity of the in- 

tegrals A(A) and B(L). The limiting value of G(I) for A + 0 is obtained by noting that 

A(0) = B(0) = xakp2(x)G2(x) dx>O 

and hence limA j 0 G(A) = co. Next, by combining the 4(x) and @(x-A@) terms 

and setting y=x- 1/2fi we can write 

and 

B(A) = $ ]yrn (y- -$=)Qkm2(y+ $$‘.dp. 

Hence we have from (3.3), 

C(A) + (A/2fi)D(A) 

Wfi)W) 1 64.9) 

where 

D(A) = ia 
<, -co 

Qkm2(y + $)emy2 dy. (A.ll) 

It is easy to see that lim,, m C(A) = j_“, ye-yz dy =0 and lim, _m D(A) = 

l_“m ePyL dy>O. Hence the limit of the square bracketed term in (A.9) as A +c0 is 
L 2, which yields lim, j QI G(d) = k/2(k - 1). 

To show that G(I1) is strictly decreasing in A, we must show that C(A)/UI(L) is 

strictly decreasing in A. To demonstrate this it suffices to show that C(A)/D(I) is 

strictly decreasing in ,I, i.e., for O<,I.,<A, we have 
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However, this is true iff 

>c[, .i,zQke2(y+ +)Qkp2(z+ $)ee(y2+‘i)dydz 

e i,>,~~(Y-z)i’l’k-‘(Y+~)m*‘(z+~)-c*~’(Y+~) 

x Qke2(z+ $k=)]e~Ly2+r’)dydz>0. (A.12) 

Since y-z> 0, (A. 12) will be true if the quantity in the curly brackets is > 0, which 

follows from the strictly increasing montone likelihood ratio property of the normal 

distribution. 

The uniqueness of AL and AU (when j3i <k/2(& 1)) follows from the continuity 

and strictly decreasing property of G(A). This completes the proof of the theorem. 

The corollary to Theorem 2 follows because for L I At_ and L L Au, y” is locally 

optimal, and the corresponding max-min probability of a correct selection, PO, 

given by (2.9) is a strictly increasing function of A. 

Proof of Theorem 3. In (A. 10) set z =yfi to yield 

Integrate by parts with CD k P2(z/1/2 + A/2$6) = u and -Q(z) = u (and hence z@(z) dz = 

du) to yield 

In (A. 13) the first term inside the curly brackets is zero. In the second term, note that 

@(k + ~)@(z)=@($$?oz+ &) 
and make the change of variables fiz+U2p=y, i.e., z/l/z+A/2fi=y/fi+ 

L/31/k, to obtain 

C(A) = fi(k - 2)@ ($$=) 1’, QkP3(g + $=),cv) dy 

(A. 14) 
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Here r = 2/m, and the middle step above follows from the identity 

where p>O is an integer, a and b are arbitrary reals, and the notation @,(x / Q) is 

defined in Section 3. 

In the same way it can be shown that 

D(A) = I/f@&5 / f). (A.15) 

Finally substituting (A.14) and (A.15) in (A.9), and the resulting expression for 

G(A) in equation (3.6) leads to equation (3.9). This completes the proof of the 

theorem. 0 
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